
K. Lisa Yang Center for Conservation Bioacoustics

Machine Learning Detectors in Raven Pro

MACHINE LEARNING DETECTORS IN RAVEN PRO .. 1

INTRODUCTION ..2

CHECK LIST TO PREPARE A MODEL FOR RAVEN PRO ..2

TENSORFLOW CNN MODELS AND SOUND SIGNALS ...3

Supported bioacoustics classification machine learning models ...3

Saved model in Protocol Buffers file format ...3

Model package and “Models” folder in user directory ...3

Sound signals in waveform ...3

Sound signals unnormalized in Raven Pro..3

Sound signal may be resampled in Raven Pro to match the sample rate of the model3

METADATA ..4

Model package file folder structure ...4

Model configuration file: model_config.json ...5

Template to create model_config.json...6

Output Class Files ..7

Label Files ...8

APPENDIX I ... 11

Specifications for model configuration file model_config.json .. 11

APENDIX II ... 14

model_config.json schema ... 14

2

Introduction

Starting in release 1.6.5, Raven Pro provides a platform to integrate machine learning models as

automatic detectors for bioacoustics classifications. Currently, only TensorFlow CNN (TF) models are

supported. This is implemented in current Raven Pro’s detector framework, e.g., a new machine

learning detector called “Learning Detector” is added to existing list of available detectors in Raven Pro

detector framework.

User with a trained TensorFlow CNN classification/detection model can place it in the Raven Pro user

directory. If the required metadata is present in the model package (details below), Raven Pro will

read the model’s metadata and make the model available in its learning detector configuration UI.

User can then select appropriate model for automatic detections/classifications. Detected events will

be displayed/stored in Raven Pro selection table in the current Rave Pro detector framework.

Four models and their required metadata are included in Raven Pro 1.6.5 release:

• BirdNET_GLOBAL_3K_V2.2 (3000+ birds and other terrestrial species),

• Koogu_Katydid (30+ classes, Panama Katydids)

• Koogu_NARW (Northern Atlantic Right Whale)

• Koogu_Blue_Whale

This document describes the requirements of metadata and TF model format for Raven Pro to integrate

a TF model. The document is intended as a reference for TF model developers when they prepare the

model package to be used in Raven Pro. User should reference the Raven Knowledge Base article

“MACHINE LEARNING DETECTOR – RUNNING DETECTIONS” on how to use the “Learning Detector” in
Raven Pro.

Check list to prepare a model for Raven Pro

Here is a quick check list for preparing a model to be used in Raven Pro. More detailed descriptions for

each item are in the following sections.

 Model is TensorFlow CNN, saved in protocol buffers format (saved_model.pb)

 Model input sound signal is unnormalized waveform

 Prepare model configuration file (model_config.json)

https://www.sciencedirect.com/science/article/pii/S1574954121000273
https://zslpublications.onlinelibrary.wiley.com/doi/full/10.1002/rse2.297
https://ravensoundsoftware.com/knowledge-base/
https://ravensoundsoftware.com/knowledge-base/learning-detector/

3

 Prepare model class output file(s) (e.g., birds_north_america.csv)

 Prepare model label file(s) (e.g., common_names.csv)

 Place the model package in Raven user directory in the “[user]/Raven Pro 1.6/Models” folder

TensorFlow CNN models and sound signals

Supported bioacoustics classification machine learning models:

o Raven Pro supports trained TensorFlow (TF) CNN models for bioacoustics classifications

Saved model in Protocol Buffers file format

o The TF CNN models must be saved in Protocol Buffers format (e.g. saved_model.pb file)

Model package and “Models” folder in user directory

o The model package is a file folder that includes the saved model pb file

(saved_model.pb) and associated metadata files (more details below). The package

must be placed in Raven Pro user directory, in “…\Models” folder, e.g., [user]\Raven Pro

1.6\Models, similar to other user data files such as Selections, Presets etc. Raven Pro

automatically lists all the models available in the “…\Models” folder in the Learning

Detector UI to allow user to select one of the models as automatic detector for

classifications/detections.

Sound signals in waveform

o Raven Pro feeds the TF model sound signal in waveform and the model is expected to

perform its own FFT (Fast Fourier Transform) to convert the waveform signals to

spectrograms

Sound signals unnormalized in Raven Pro

o The sound signals waveform sent to TF model from Raven Pro is unnormalized, e.g., the

normalization is expected to be performed by TF model.

Sound signal may be resampled in Raven Pro to match the sample rate of the
model

o Sample rate supported by the model should be provided in the model’s metadata in the

model configuration file, the model_config.json file(more details below). If the sample

4

rate of the sound signal doesn’t match what is supported by the model, Raven Pro will
process/resample the sound data to match the sample rate before sending it to the

model for classification/detection.

Metadata

For Raven Pro to load a trained TF model, send sound signals to the model properly and process the

model’s classification outputs, the following information/metadata are required to be included in the TF

model package/folder:

• Model configuration file: model_config.json

• Output class files: e.g., birds_global.csv

• Label files: e.g., common_names.csv

Model package file folder structure

The following is an example of a model package file folder structure, as seen in BirdNET model

package included in Raven Pro 1.6.5:

5

Model configuration file: model_config.json

o The model_config.json file provides model configuration information needed by Raven to

send sound signals to the model properly. The information provided in the file must match

the configuration of the model.

o The file format is in JSON. See Appendix II for the model_config.json file schema

o The file needs to be placed at the top level of the model package (see above Model file

folder structure)

o model_config.json file needs to include the following information:

▪ specVersion

▪ modelDescription

6

▪ signatures

• modelInputs

• modelOutputs

• semanticKeys (optional)

▪ modelTypeConfig

▪ globalSemanticKeys

o When user select a TF model from Raven Pro learning detector UI, Raven Pro reads the

model_config.json file in selected model package and populates the learning detector’s UI
with available model signatures, the selected signature’s available model inputs, outputs,
class outputs and labels

o Specifications and more detailed information on the model_config.json file structure/format

can be found in Appendix I.

Template to create model_config.json

Below is a template to create the model_config.json file needed by Raven Pro. You can copy and paste

the text below to a text editor, make updates as needed and save it as model_config.json file. Place

the file in your model’s package’s top level. The fields highlighted in yellow need to be updated to

reflect your model’s configuration. If you used default signatures to generate the TF model, most likely

the signatureName, inputName and outputName are still defaults and you don’t need to change them
here. In that case, the most important information to update is the sampleRate and

globalSemanticKeys. The globalSemanticKeys are the list of the detection/classification classes in your

model. The order of the keys must match the order of the classification outputs of your model. The

keys are used to specify thresholds of class output scores and label the classes. See more details in

Output class files and Labels files.

Here is the template:

{

 "specVersion": 1,

 "modelDescription": "your model description",

 "signatures": [

 {

 "signatureName": "basic",

 "modelInputs": [

 {

 "inputName": "inputs",

7

 "sampleRate": 250.0,

 "inputConfig": [

 "BATCH",

 "SAMPLES"

]

 }

],

 "modelOutputs": [

 {

 "outputName": "scores",

 "outputType": "SCORES"

 }

],

 "semanticKeys": []

 }

],

 "modelTypeConfig": {

 "modelType": "RECOGNITION"

 },

 "globalSemanticKeys": [

 "class1",

 "class2"

]

}

Output Class Files

o User or model developer can configure the classification outputs to group classes based on

geographic regions, interests or focused species etc. This is done by creating separate

output class files and put them in “…\Classes” folder in the model package.

o The output class files are in CSV format (comma separate value)

o Examples of output class files included in BirdNET model:

▪ Birds_global.cvs

▪ Birds_us_north_america.cvs

▪ Birds_europe.cvs

▪ Birds_south_east_asia.cvs

8

o Output class file structure: for each species, there is a row that contains the following

information:

▪ Semantic key/ID of the species – string

▪ Score threshold for detection/classification – positive number

▪ Low limit frequency of the call – positive number

▪ Upper limit frequency of the call – positive number

▪ Whether the species should be suppressed/ignored during detection/classification –

boolean TRUE or FALSE

▪ The following is a section of the birds_north_america.csv file, as an example:

comred 0.25 0 12000 FALSE

hoared 0.25 0 12000 FALSE

coohaw 0.25 0 12000 FALSE

norgos 0.25 0 12000 FALSE

eurspa1 0.25 0 12000 FALSE

shshaw 0.25 0 12000 FALSE

o Editable in Raven:

▪ Raven Pro lists all the available csv files in the model package’s “…\Classes” folder in

the learning detector UI to allow user to choose. The content of a user selected

class output file is displayed in the learning detector UI. User can change the

threshold (threshold change is applied to all specifies in Raven Pro), suppress some

or all species (then reselect a few focused ones) in the UI for class output processing

o Create or edit using any text editor

▪ User or model developer can also edit an existing output class file or create a new

one based on their need or focus of analysis using any text editor, such as MS Excel.

o During detection/classification, Raven Pro will only produce classification/detection results in

a Raven selection table for the events that have scores above the threshold specified in the

selected output class file and the species is not suppressed.

Label Files

o Label files contain the labels/names of the classes/species in the learning detector’s
detection/classification outputs. Raven translates the class ID from semantic key to the

label provided in the selected label file.

o The label files are in CSV format, comma separated value.

o User or model developer can create multiple label files based on language, common names

etc. and placed them in the “…\Labels” folder in the model package.

9

o Raven will list the available label files in the “…\Labels” folder in the learning detector UI,

allowing user to select.

o Example of label files included in BirdNET model

▪ Common_names.csv

▪ Common_names_de.csv (German)

▪ Common_names_es.csv (Spanish)

▪ Common_names_fr.csv (French)

o The following is a portion of common_names.csv, as an example

rufwar1 Rufous-faced Warbler

yebwar1 Yellow-bellied Warbler

watgua1 Wattled Guan

spchon1

Spiny-cheeked

Honeyeater

lesred1 Lesser Redpoll

comred Common Redpoll

hoared Hoary Redpoll

yertho1 Yellow-rumped Thornbill

tastho1 Tasmanian Thornbill

brotho1 Brown Thornbill

o The label file is a list of one-to-one translation for each class/species, from semantic key to

label. The label is used in the Raven detection/classification output selection table in the

“Label” annotation column. See example below, a screenshot of selection table with result

of Learning Detector detections using BirdNET model.

10

o For a selected label file, if Raven can’t find a label for a species, the species’ semantic key

will be used as Label in the detection/classification output selection table

11

Appendix I

Specifications for model configuration file model_config.json

This section provides detailed specifications for model_config.json file. For most cases, user can use

the template above to create a model_config.json file to support Raven Pro’s need. The information

below is reference on the full capabilities of the model_config.json file format, many of them are place

holders for future developments and improvements.

o model_config.json file includes the following information (see json schema):

▪ specVersion

▪ modelDescription

▪ signatures

• modelInputs

• modelOutputs

• semanticKeys (optional)

▪ modelTypeConfig

▪ globalSemanticKeys

o File structure specifications:

▪ specVersion

• Integer number, specify the model_config.json file’s schema version or
specification version number that is supported by Raven.

• Current supported version: “1”
• Raven Pro uses specVersion to handle file compatibility.

▪ modelDescription

• string, words or sentences to provide brief descriptions about the model.

• Example: “Automated scientific audio data processing and bird ID.”
• Raven Pro displays the model description in the learning detector UI when a

model is selected

▪ signatures: array of signature objects

• signature: object to specify the configurations of model’s inputs and outputs.
The information provided in the signature must match those in the model

o signatureName:

▪ string, name of a signature of the model

▪ Example: “basic” is BirdNET model’s one signature’s name

▪ Used in Raven Pro learning detector UI for signature selection

12

o modelInputs: array of modelInput objects

▪ modelInput: object to describe the model input configuration.

It contains the following:

• inputName:

o string, name of an input of a model’s signature

o Example: “inputs” is one input’s name of a
model’s signature

o Used in Raven Pro learning detector UI for

model input selection

• sampleRate:

o positive number, describes the sound recording

sample rate supported by the model.

o Example: 48000.0 (in Hz)

o Raven Pro display the sample rate of a selected

model’s input in the learning detector UI.
Raven Pro will display a resample message in

UI if the sample rate of a sound file doesn’t
match the model supported sample rate

• inputConfig:

o Array of strings from the enumeration: “batch”,
“channels”, “samples”, “blank”. It tells Raven

how to structure the data of the model input

array, e.g. the shape of the input data.

o Example: [“batch”, “samples”]
o Above example tells Raven sample size can be

obtained from index 1 of the model input shape

array. Currently, Raven only uses “samples”.
o modelOutputs: array of modelOutput objects that describe the model

output configurations.

▪ modelOutput: object to describe the model output

configuration. It contains the following:

• outputName:

o string, describe name of the output,

o Example: “scores”
o used in Raven Pro learning detector UI for

model output selection

13

• outputType:

o string from enumeration “EMBEDDINGS”,
“”SCORES”. It tells Raven the model’s output
type. SCORES is the only type supported by

Raven right now.

o Example: “SCORES”
o Raven processes all model’s output scores,

checking them against the threshold specified

in Raven user interface. For class with score

above threshold, Raven creates a

selection/detection.

o semanticKeys:

▪ Array of strings, listing all the semantic keys/codes of the

species that the selected signature of the model can

classify/detect.

▪ Raven uses this to pre-filter the list of global keys, since some

signatures may only output some of the classes listed there

▪ This is optional. Generally, they are a signature specific

subset of the global keys (see below).

▪ modelTypeConfig: object that specifies the model type. It contains the following:

• modelType: string from enumeration “RECOGNITION”, “STREAM”. Currently
Raven only supports model with RECOGNITION type.

▪ globalSemanticKeys: array of strings, listing all the semantic keys/IDs of all the

species the model can classify. The list is required and must contain output class

keys in the specific order of the output tensors. That is, the order of the list must

match the order of output classes in the model.

o Example model_config.json (abridged from BirdNET model’s model_config.json file with
most semanticKeys removed)

{

 "specVersion": "1",

 "modelDescription": " Automated scientific audio data processing and bird

ID.\nDeveloped by the K. Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab

of Ornithology.",

 "signatures": [{

 "signatureName": "basic",

14

 "modelInputs": [{

 "inputName": "inputs",

 "sampleRate": 48000.0,

 "inputConfig": [

 "batch",

 "samples"

]

 }],

 "modelOutputs": [{

 "outputName": "scores",

 "outputType": "SCORES"

 }]

 }],

 "modelTypeConfig": {

 "modelType": "RECOGNITION"

 },

 "globalSemanticKeys": [

 "rufwar1",

 "yebwar1",

 "watgua1",

 "spchon1",

 "lesred1",

 "capwhe2"

]

}

Apendix II

model_config.json schema

The following is the schema generated from the ModelConfiguration class in Raven Pro.

{
 "type" : "object",

15

 "properties" : {
 "specVersion" : {
 "type" : "integer"
 },
 "modelDescription" : {

 "type" : "string"
 },
 "signatures" : {
 "type" : "array",
 "items" : {
 "type" : "object",
 "properties" : {
 "signatureName" : {
 "type" : "string"

 },
 "modelInputs" : {
 "type" : "array",
 "items" : {
 "type" : "object",
 "properties" : {
 "inputName" : {
 "type" : "string"
 },

 "sampleRate" : {
 "type" : "number"
 },
 "inputConfig" : {
 "type" : "array",
 "items" : {
 "type" : "string",
 "enum" : ["BATCH", "CHANNELS", "SAMPLES", "BLANK"]
 }

 }
 }
 }
 },
 "modelOutputs" : {
 "type" : "array",
 "items" : {
 "type" : "object",
 "properties" : {
 "outputName" : {

 "type" : "string"
 },
 "outputType" : {
 "type" : "string",
 "enum" : ["EMBEDDINGS", "SCORES"]

16

 }
 }

 }
 },
 "semanticKeys" : {

 "type" : "array",
 "items" : {
 "type" : "string"
 }
 }
 }
 }
 },
 "modelTypeConfig" : {

 "type" : "object",
 "properties" : {
 "modelType" : {
 "type" : "string",
 "enum" : ["RECOGNITION", "STREAM"]
 }
 }
 },
 "globalSemanticKeys" : {

 "type" : "array",
 "items" : {
 "type" : "string"
 }
 }
 }
}

	Machine Learning Detectors in Raven Pro
	Introduction
	Check list to prepare a model for Raven Pro
	TensorFlow CNN models and sound signals
	Saved model in Protocol Buffers file format
	Model package and “Models” folder in user directory
	Sound signals in waveform
	Sound signals unnormalized in Raven Pro
	Sound signal may be resampled in Raven Pro to match the sample rate of the model

	Metadata
	Model package file folder structure
	Model configuration file: model_config.json
	Template to create model_config.json
	Output Class Files
	Label Files

	Appendix I
	Specifications for model configuration file model_config.json

	Apendix II
	model_config.json schema

